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Abstract
Results obtained in two recent papers, (Kaszlikowski D, Gnacinski P,
Zukowski M, Miklaszewski W and Zeilinger A 2000 Phys. Rev. Lett. 85 4418
and Durt T, Kaszlikowski D and Zukowski M 2001 Preprint quant-ph/0101084)
seem to indicate that the nonlocal character of the correlations between the
outcomes of measurements performed on entangled systems separated in space
is not robust in the presence of noise. This is surprising, since entanglement
itself is robust. Here we revisit this problem and argue that the class of gedanken
experiments considered in the two recent papers listed above is too restrictive.
By considering a more general class, involving sequences of measurements, we
prove that the nonlocal correlations are in fact robust.

PACS number: 03.67.-a

In his famous paper [1], Bell showed that quantum mechanics predicts nonlocal correlations
between measurement outcomes at spatially separated regions in a certain experiment. By
nonlocal correlations we mean correlations which cannot be explained by any local hidden
variable (LHV) model. During the last few years other aspects of nonlocality, in addition to
generating nonlocal correlations have been discovered. For example, the ability of quantum
states to teleport [2], to super-dense code [3], and to reduce the number of classical bits
required to perform certain communication tasks (in the so-called ‘communication complexity’
scenario) [4]. Further, nonlocality appears to be at the heart of quantum computation1 and its
ability to perform certain computations exponentially faster than any classical device.

Two recent papers [5] and [6] have studied the question of robustness of nonlocal
correlations. Results in [5] and [6] seem to indicate a very surprising result. Namely, it
appears that in a certain sense (which we will define more precisely later), quantum nonlocal
correlations are not very robust. Here we would like to argue that nonlocal correlations are
actually very robust. While we do not disagree with the specific results found in [5] and [6],
we show that the class of gedanken experiments they have considered (though very interesting

1 There are many reviews of this topic, e.g. [7].
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in itself) is in fact quite limited and not sensitive enough. We present a different class of
experiments which shows that nonlocal correlations are robust.

The authors of [5] and [6] have considered two quantum particles, each living in an N -
dimensional Hilbert space, which are in the maximally entangled state mixed with random
noise. i.e. states of the form

ρN(FN) = (1 − FN) |�N 〉AB 〈�N | + FN

1

N2
ÎN×N (1)

where

|�N 〉AB = 1√
N

N∑
m=1

|m〉A |m〉B (2)

FN is a constant 0 � FN � 1 which describes the fraction of noise and ÎN×N is the identity
matrix. They have asked, ‘what is the maximum fraction of noise, FN , which can be added to
the maximally entangled state so that the state still generates nonlocal correlations’?

It is useful here to make a clear distinction between two different issues which are relevant
for our discussion. The first is the issue of entanglement or non-separability. A quantum state
is separable if it can be written as

ρAB =
∑

i

piρ
i
Aρi

B (3)

and it is non-separable otherwise.
It has been shown [8–10] that if too much noise is added to the maximally entangled state,

the state ceases to be entangled. Obviously, at this moment the quantum state ceases to have
any nonlocal aspects whatsoever.

The other issue is whether or not the results of all possible measurements performed on
the state can be explained by a LHV model. If they cannot we say, following Bell, that the
state generates nonlocal correlations (sometimes this is called a ‘violation of local realism’).

It is clear that when there is so much noise that the state becomes separable, the state
cannot generate any nonlocal correlations. It is, however, possible that the state ceases to
generate nonlocal correlations at smaller levels of noise, i.e. while it is still entangled. Indeed,
it is not known if every entangled (mixed) state generates nonlocal correlations or not—this is
one of the most important issues in quantum nonlocality.

It appears from the results of [5] and [6] that the nonlocal correlations are not robust,
meaning that for fractions of noise greater than FN ≈ 0.33 none of the states ρ(FN) produce
nonlocal correlations. This is very surprising since the entanglement property of the maximally
entangled states is robust—for any fraction of noise, when the dimensionality of the systems is
large enough (how large depending on the fraction of noise), the states of form (1) are entangled.
Furthermore, these mixed entangled states exhibit most other nonlocality aspects—for example
they can be used for teleportation, super-dense coding, and can be purified to yield singlets.
So it would be quite strange if they could not also generate nonlocal correlations.

We shall show that nonlocal correlations are, similar to entanglement, robust. More
precisely we shall show that for any fraction of noise there are states (and experiments to
perform upon those states) which exhibit nonlocal correlations. The reason that [5] and [6] did
not find these experiments is because they only looked at experiments in which a single von-
Neumann measurement is made on each particle; here we look at sequences of von-Neumann
measurements.

The present discussion is, to some extent, a repeat of the history concerning Werner’s
density matrices. In 1989 Werner [11] presented some density matrices which are entangled but
which are such that if single von-Neumann measurements are made on each particle, the results
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can be explained by a LHVs model. At that time it was tacitly assumed that performing single
von-Neumann measurements on each particle essentially covers all possibilities. However, it
was subsequently shown [12] that the outcomes of sequences of von-Neumann measurements
are nonlocal—they cannot be explained by any hidden variables model. This work was then
extended in [13–15].

We shall next explain why performing sequences of measurements puts additional
constraints on LHV models, then use this to prove that there are states with arbitrarily high
fractions of noise which exhibit nonlocal correlations.

Consider two observers, Alice and Bob, situated in two space separated regions. The
standard assumption of LHV is that if Alice performs any arbitrary measurement A and Bob
performs any arbitrary measurement B, and the measurements are timed so that they take
place outside the light-cone of each other, then there exists a shared random variable λ, with
distribution µ(λ), and local distributions PA(a; λ) and PB(b; λ) such that the joint probability
that the measurement of A yields a and the measurement of B yields b is given by

PAB(a, b) =
∫

PA(a; λ)PB(b; λ)µ(λ) dλ. (4)

Consider now that Alice and Bob, instead of subjecting their particles to a single
measurement, perform two measurements one after the other, say A1 followed by A2 and
B1 followed by B2. Then a LHV model implies that

PA1A2B1B2(a1, a2, b1, b2) =
∫

PA1A2(a1, a2; λ)PB1B2(b1, b2; λ)µ(λ) dλ. (5)

Quantum mechanically the two measurements on each side could be viewed as a single
POVM. For LHV models however, doing one measurement after the other gives us the extra
constraint that we must be able to write PA1A2(a1, a2; λ) in the form

PA1A2(a1, a2; λ) = PA1(a1; λ)PA2(a2; A1, a1, λ). (6)

Here PA1(a1; λ) is the probability that Alice’s particle yields the answer a1 when the first
measurement to which is subjected is A1 and given that the hidden variable has the value
λ. PA2(a2; A1, a1, λ) is the probability that Alice’s particle yields the outcome a2 when the
second measurement is A2, given that the hidden variable has the value λ and given that it was
first subjected to a measurement of A1 to which it yielded the outcome a1. The reason is that
when Alice’s particle has to give the outcome of measurement A1, it does not yet know what
exactly will be the measurement A2 that will be subsequently performed, and so cannot use
that information to decide which outcome a1 to give. We must write Bob’s probabilities in a
similar way.

Now, let us look at the probabilities of outcomes of the second measurement, conditioned
on some fixed result of the first:

PA2B2(a2, b2; A1, a1, B1, b1) = PA1A2B1B2(a1, a2, b1, b2)

PA1B1(a1b1)
. (7)

Substituting (5) and (6) into (7), and defining

µ̃(λ) = PA1(a1; λ)PB1(b1; λ)∫
PA1(a1; λ)PB1(b1; λ)µ(λ) dλ

(8)

we have that

PA2B2(a2, b2; A1, a1, B1, b1) =
∫

PA2(a2; A1, a1, λ)PB2(b2; B1, b1, λ)µ̃(λ) dλ. (9)
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We shall now only consider experiments in which the first measurements are fixed and
give some particular fixed outcomes, and thus can drop the indices A1, a1, B1 and b1, which
leaves us with

PA2B2(a2b2) =
∫

PA2(a2; λ)PB2(b2; λ)µ̃(λ) dλ. (10)

We further note that µ̃(λ) is positive and
∫

µ̃(λ) dλ = 1, thus it can be viewed as a probability
distribution analogously to µ(λ). Thus, if the whole experiment could be explained by a LHVs
model, then the probabilities of outcomes for the second measurement conditioned upon any
result of the first measurement have to be given by a LHV model themselves. This is a
consequence of doing the measurements one after the other rather than together. In particular,
we can look at Bell inequalities for these conditioned probabilities, and know that if they are
violated, then the initial state is nonlocal. For example suppose that the second measurement
which is performed by Alice is either A2 or A′

2 and that performed by Bob is either B2 or B ′
2.

Then using the CHSH inequality [16] (a particular Bell type inequality) and (10) it follows
that

E(A2B2) + E(A2B
′
2) + E(A′

2B2) − E(A′
2B

′
2) � 2. (11)

Here E(A2B2) = Tr ρ̃A2B2 is the expectation value of the product of the operators A2 and B2

in the state ρ̃ which is the state of the system after the first measurements (assuming that we
indeed obtained the particular fixed outcomes we have chosen).

We shall now use (11) to show that for sufficiently large N , the states defined in equation (1)
generate nonlocal correlations. We take the first measurement on Alice’s side, A1, to be the
projection onto the subspace {|1〉A, |2〉A}. The first measurement on Bob’s side, B1, is the
projection onto the subspace {|1〉B, |2〉B}. We just look at the cases where the state is indeed
in the first two subspaces, in which case the state becomes (after the first measurements):

ρ̃ = (1 − FN)N

N(1 − FN) + 2FN

|�2〉 〈�2| +
2FN

N(1 − FN) + 2FN

Î2×2

22
. (12)

We now take the second measurements (A2, A′
2, B2, B ′

2) to be those which give the
maximal violation of the CHSH inequality on the state |�2〉AB , and we note that if the CHSH
inequality is violated, the initial state is nonlocal. This occurs when

FN <
N

N + c
(13)

where c = 2√
2−1

≈ 4.83. Therefore, for any fraction of noise we can, by taking N large
enough, find states which give nonlocal correlations. Thus we have shown that the nonlocal
correlations are robust to noise.

Finally, we note that we have not completely solved the problem of which states of the
form (1) generate nonlocal correlations. Recalling that [7–9] states of this form are separable
iff FN � N

N+1 , we can see that the states for which N
N+c

� FN < N
N+1 are entangled but do

not violate the Bell inequality we have considered. It is an interesting and open question as to
whether these states generate nonlocal correlations or not.
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